Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 136: 102388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182038

RESUMO

Organophosphorus (OP) pesticides and insecticides are used in agriculture and other industries can also cause adverse effects through environmental exposures in the people working in agricultural and pesticide industries. OP nerve agent exposures have been associated with delayed neurotoxic effects including sleep disorders, cognitive malfunctions, and brain damage in Gulf War victims, and Japanese victims of terrorist attacks with nerve agents. However, the mechanisms behind such prolonged adverse effects after chronic OP nerve agent's exposures in survivors are not well understood. In the present study, male Wistar rats were subcutaneously exposed to nerve agent soman (0.25XLD50) for 21 consecutive days to evaluate the neurobehavioral, neuropathological and biochemical alterations (oxidative stress and antioxidants levels). Neurobehavioral studies using Elevated Plus Maze (EPM), T-Maze, and rotarod tests revealed that chronic soman exposure produced alterations in behavioral functions including increased anxiety and reduction in working memory and neuromuscular strength. Biochemical studies showed that antioxidants enzyme (glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) levels were reduced and oxidative stress (reduced glutathione (GSH) and lipid peroxidation levels (malondialdehyde (MDA)) were significantly increased in brain at 30 days in soman exposed rats as compared to control rats. Neuroselective fluorojade-c stain was used to examine the brain damage after chronic soman exposure. Results demonstrated that chronic soman exposure induced neurodegeneration as brain damage was detected at 30- and 90-days post exposure. The present study results suggest that chronic nerve agent exposures even at low doses may produce long-term adverse effects like neurobehavioral deficits in rats.


Assuntos
Lesões Encefálicas , Inseticidas , Agentes Neurotóxicos , Praguicidas , Soman , Humanos , Ratos , Masculino , Animais , Soman/toxicidade , Agentes Neurotóxicos/farmacologia , Ratos Wistar , Encéfalo , Antioxidantes/farmacologia , Estresse Oxidativo
2.
J Pharmacol Exp Ther ; 388(2): 399-415, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38071567

RESUMO

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.


Assuntos
Agentes Neurotóxicos , Fármacos Neuroprotetores , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroesteroides/uso terapêutico , Isoflurofato/farmacologia , Midazolam/farmacologia , Doenças Neuroinflamatórias , Encéfalo , Agentes Neurotóxicos/farmacologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/tratamento farmacológico , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/farmacologia , Transtornos da Memória/patologia
3.
J Pharmacol Exp Ther ; 388(2): 367-375, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37918856

RESUMO

Organophosphates cause hyperstimulation of the central nervous system, leading to extended seizures, convulsions, and brain damage. Sarin is a highly toxic organophosphate nerve agent that has been employed in several terrorist attacks. The prolonged toxicity of sarin may be enhanced by the neuroinflammatory response initiated by the inflammasome, caspase involvement, and generation/release of proinflammatory cytokines. Since neurodegeneration and neuroinflammation are prevalent in sarin-exposed animals, we were interested in evaluating the capacity of quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh), a pan caspase inhibitor to attenuate neuroinflammation following sarin exposure. To test this hypothesis, sarin-exposed C57BL/6 mice were treated with Q-VD-OPh or negative control quinolyl-valyl-O-methylglutamyl-[-2,6-difluorophenoxy]-methyl ketone, sacrificed at 2- and 14-day time points, followed by removal of the amygdala and hippocampus. A Bio-Rad 23-Plex cytokine analysis was completed on each tissue. The results suggest that exposure to sarin induced a dramatic increase in interleukin-1ß and 6 other cytokines and a decrease in 2 of the 23 cytokines at 2 days in the amygdala compared with controls. Q-VD-OPh attenuated these changes at the 2-day time point. At 14 days, six of these cytokines were still significantly different from controls. Hippocampus was less affected at both time points. Diazepam, a neuroprotective drug against nerve agents, caused an increase in several cytokines but did not have a synergistic effect with Q-VD-OPh. Treatment of sarin exposure with apoptosis inhibitors appears to be a worthwhile approach for further testing as a comprehensive counteragent against organophosphate exposure. SIGNIFICANCE STATEMENT: A pan inhibitor of caspases (Q-VD-OPh) was proposed as a potential antidote for sarin-induced neuroinflammation by reducing the level of inflammation via inflammasome caspase inhibition. Q-VD-OPh added at 30 minutes post-sarin exposure attenuated the inflammatory response of a number of cytokines and chemokines in the amygdala and hippocampus, two brain regions sensitive to organophosphate exposure. Apoptotic marker reduction at 2 and 14 days further supports further testing of inhibitors of apoptosis as a means to lessen extended organophosphate toxicity in the brain.


Assuntos
Clorometilcetonas de Aminoácidos , Agentes Neurotóxicos , Quinolinas , Sarina , Camundongos , Animais , Sarina/toxicidade , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Doenças Neuroinflamatórias , Inflamassomos , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Encéfalo , Citocinas , Agentes Neurotóxicos/farmacologia , Caspases , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Organofosfatos/farmacologia , Cetonas/efeitos adversos
4.
Chem Biol Interact ; 364: 110061, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872047

RESUMO

Exposure to highly toxic organophosphorus compounds causes inhibition of the enzyme acetylcholinesterase resulting in a cholinergic toxidrome and innervation of receptors in the neuromuscular junction may cause life-threatening respiratory effects. The involvement of several receptor systems was therefore examined for their impact on bronchoconstriction using an ex vivo rat precision-cut lung slice (PCLS) model. The ability to recover airways with therapeutics following nerve agent exposure was determined by quantitative analyses of muscle contraction. PCLS exposed to nicotine resulted in a dose-dependent bronchoconstriction. The neuromuscular nicotinic antagonist tubocurarine counteracted the nicotine-induced bronchoconstriction but not the ganglion blocker mecamylamine or the common muscarinic antagonist atropine. Correspondingly, atropine demonstrated a significant airway relaxation following ACh-exposure while tubocurarine did not. Atropine, the M3 muscarinic receptor antagonist 4-DAMP, tubocurarine, the ß2-adrenergic receptor agonist formoterol, the Na+-channel blocker tetrodotoxin and the K+ATP-channel opener cromakalim all significantly decreased airway contractions induced by electric field stimulation. Following VX-exposure, treatment with atropine and the Ca2+-channel blocker magnesium sulfate resulted in significant airway relaxation. Formoterol, cromakalim and magnesium sulfate administered in combinations with atropine demonstrated an additive effect. In conclusion, the present study demonstrated improved airway function following nerve agent exposure by adjunct treatment to the standard therapy of atropine.


Assuntos
Broncoconstrição , Agentes Neurotóxicos , Acetilcolinesterase , Animais , Atropina/farmacologia , Cromakalim/farmacologia , Estimulação Elétrica , Fumarato de Formoterol/farmacologia , Sulfato de Magnésio/farmacologia , Antagonistas Muscarínicos/farmacologia , Contração Muscular , Agentes Neurotóxicos/farmacologia , Nicotina/farmacologia , Ratos , Tubocurarina/farmacologia
5.
Eur J Med Chem ; 238: 114377, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526478

RESUMO

The fluorinated bis-pyridinium oximes were designed and synthesized with the aim of increasing their nucleophilicity and potential to reactivate phosphorylated human recombinant acetylcholinesterase (AChE) and human purified plasmatic butyrylcholinesterase (BChE) in relation to chlorinated and non-halogenated oxime analogues. Compared to non-halogenated oximes, halogenated oximes showed lower pKa of the oxime group (fluorinated < chlorinated < non-halogenated) along with higher level of oximate anion formation at the physiological pH, and had a higher binding affinity of both AChE and BChE. The stability tests showed that the fluorinated oximes were stable in water, while in buffered environment di-fluorinated oximes were prone to rapid degradation, which was reflected in their lower reactivation ability. Mono-fluorinated oximes showed comparable reactivation to non-halogenated (except asoxime) and mono-chlorinated oximes in case of AChE inhibited by sarin, cyclosarin, VX, and tabun, but were less efficient than di-chlorinated ones. The same trend was observed in the reactivation of inhibited BChE. The advantage of halogen substituents in the stabilization of oxime in a position optimal for in-line nucleophilic attack were confirmed by extensive molecular modelling of pre-reactivation complexes between the analogue oximes and phosphorylated AChE and BChE. Halogen substitution was shown to provide oximes with additional beneficial properties, e.g., fluorinated oximes gained antioxidative capacity, and moreover, halogens themselves did not increase cytotoxicity of oximes. Finally, the in vivo administration of highly efficient reactivator and the most promising analogue, 3,5-di-chloro-bispyridinium oxime with trimethylene linker, provided significant protection of mice exposed to sarin and cyclosarin.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Halogênios , Camundongos , Agentes Neurotóxicos/farmacologia , Compostos Organofosforados , Oximas/química , Sarina/química
6.
Inorg Chem ; 61(3): 1512-1520, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34969248

RESUMO

Maintaining a long-term continuous and stable reactivator blood concentration to treat organophosphorus nerve agent poisoning using acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) is very important yet difficult. Because the flexible framework of MIL-88B(Fe) nanoparticles (NPs) can swell in polar solvents, pralidoxime chloride (2-PAM) was loaded in MIL-88B(Fe) NPs (size: ca. 500 nm) by stirring and incubation in deionized water to obtain 2-PAM@MIL-88B(Fe), which had a maximum drug loading capacity of 12.6 wt %. The as-prepared composite was characterized by IR, powder X-ray diffraction (P-XRD), scanning electron microscopy (SEM), ζ-potential, Brunauer-Emmett-Teller (BET), and thermogravimetry/differential thermal analysis (TG/DTA). The results showed that under constant conditions, the maximum drug release rates of 2-PAM@MIL-88B(Fe) in absolute ethanol, phosphate-buffered saline (PBS) solution (pH = 7.4), and PBS solution (pH = 4) at 150 h were 51.7, 80.6, and 67.1%, respectively. This was because the composite showed different swelling behaviors in different solvents. In PBS solution with pH = 2, the 2-PAM@MIL-88B(Fe) framework collapsed after 53 h and released 100% of 2-PAM. For mice after intragastric poisoning with sarin (a neurotoxic agent), an atropine-assisted 2-PAM@MIL-88B(Fe) treatment experiment revealed that 2-PAM@MIL-88B(Fe) continuously released 2-PAM for more than 72 h so that poisoned AChE was continuously and steadily reactivated. The reactivation rate of AChE was 56.7% after 72 h. This composite is expected to provide a prolonged, stable therapeutic drug for the mid- and late-stage treatment of neurotoxic agent poisoning.


Assuntos
Estruturas Metalorgânicas/química , Agentes Neurotóxicos/farmacologia , Compostos de Pralidoxima/farmacologia , Sarina/antagonistas & inibidores , Acetilcolinesterase/análise , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Atropina/administração & dosagem , Atropina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos , Nanopartículas/química , Agentes Neurotóxicos/química , Compostos de Pralidoxima/administração & dosagem , Compostos de Pralidoxima/química , Sarina/administração & dosagem , Sarina/toxicidade
7.
Neurotoxicol Teratol ; 87: 107012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34256162

RESUMO

Residual effects of the 1990-1991 Gulf War (GW) still plague veterans 30 years later as Gulf War Illness (GWI). Thought to stem mostly from deployment-related chemical overexposures, GWI is a disease with multiple neurological symptoms with likely immunological underpinnings. Currently, GWI remains untreatable, and the long-term neurological disease manifestation is not characterized fully. The present study sought to expand and evaluate the long-term implications of prior GW chemicals exposure on neurological function 6-8 months post GWI-like symptomatology induction. Additionally, the beneficial effects of delayed treatment with the glycan immunotherapeutic lacto-N-fucopentaose III (LNFPIII) were evaluated. Male C57BL/6J mice underwent a 10-day combinational exposure (i.p.) to GW chemicals, the nerve agent prophylactic pyridostigmine bromide (PB) and the insecticide permethrin (PM; 0.7 and 200 mg/kg, respectively). Beginning 4 months after PB/PM exposure, a subset of the mice were treated twice a week until study completion with LNFPIII. Evaluation of cognition/memory, motor function, and mood was performed beginning 1 month after LNFPIII treatment initiation. Prior exposure to PB/PM produced multiple locomotor, neuromuscular, and sensorimotor deficits across several motor tests. Subtle anxiety-like behavior was also present in PB/PM mice in mood tests. Further, PB/PM-exposed mice learned at a slower rate, mostly during early phases of the learning and memory tests employed. LNFPIII treatment restored or improved many of these behaviors, particularly in motor and cognition/memory domains. Electrophysiology data collected from hippocampal slices 8 months post PB/PM exposure revealed modest aberrations in basal synaptic transmission and long-term potentiation in the dorsal or ventral hippocampus that were improved by LNFPIII treatment. Immunohistochemical analysis of tyrosine hydroxylase (TH), a dopaminergic marker, did not detect major PB/PM effects along the nigrostriatal pathway, but LNFPIII increased striatal TH. Additionally, neuroinflammatory cells were increased in PB/PM mice, an effect reduced by LNFPIII. Collectively, long-term neurobehavioral and neurobiological dysfunction associated with prior PB/PM exposure was characterized; delayed LNFPIII treatment provided multiple behavioral and biological beneficial effects in the context of GWI, highlighting its potential as a GWI therapeutic.


Assuntos
Agentes Neurotóxicos/farmacologia , Síndrome do Golfo Pérsico/tratamento farmacológico , Polissacarídeos/farmacologia , Tempo para o Tratamento , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Permetrina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
8.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630769

RESUMO

The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the "classical five", namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure-activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Compostos Organotiofosforados/química , Compostos Organotiofosforados/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/sangue , Inibidores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Estabilidade de Medicamentos , Humanos , Agentes Neurotóxicos/química , Agentes Neurotóxicos/farmacologia , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacologia , Compostos Organotiofosforados/sangue , Compostos Organotiofosforados/farmacocinética , Relação Estrutura-Atividade
9.
Chem Biol Interact ; 326: 109139, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32454005

RESUMO

Since several decades oximes have been used as part of treatment of nerve agent intoxication with the aim to restore the biological function of the enzyme acetylcholinesterase after its covalent inhibition by organophosphorus compounds such as pesticides and nerve agents. Recent findings have illustrated that, besides oximes, certain Mannich phenols can reactivate the inhibited enzyme very effectively, and may therefore represent an attractive complementary class of reactivators. In this paper we further probe the effect of structural variation on the in vitro efficacy of Mannich phenol based reactivators. Thus, we present the synthesis of 14 compounds that are close variants of the previously reported 4-amino-2-(1-pyrrolidinylmethyl)-phenol, a very effective non-oxime reactivator, and 3 dimeric Mannich phenols. All compounds were assessed for their ability to reactivate human acetylcholinesterase inhibited by the nerve agents VX, tabun, sarin, cyclosarin and paraoxon in vitro. It was confirmed that the potency of the compounds is highly sensitive to small structural changes, leading to diminished reactivation potency in many cases. However, the presence of 4-substituted alkylamine substituents (as exemplified with the 4-benzylamine-variant) was tolerated. More surprisingly, the dimeric compounds demonstrated non-typical behavior and displayed some reactivation potency as well. Both findings may open up new avenues for designing more effective non-oxime reactivators.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Agentes Neurotóxicos/química , Agentes Neurotóxicos/farmacologia , Oximas/química , Oximas/farmacologia , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/farmacologia , Reativadores da Colinesterase/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Relação Estrutura-Atividade
10.
ACS Chem Neurosci ; 11(7): 1072-1084, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105443

RESUMO

Nerve agents, the deadliest chemical warfare agents, are potent inhibitors of acetylcholinesterase (AChE) and cause rapid cholinergic crisis with serious symptoms of poisoning. Oxime reactivators of AChE are used in medical practice in the treatment of nerve agent poisoning, but the search for novel improved reactivators with central activity is an ongoing pursuit. For numerous oximes synthesized, in vitro reactivation is a standard approach in biological evaluation with little attention given to the pharmacokinetic properties of the compounds. This study reports a comprehensive physicochemical, pharmacokinetic, and safety profiling of five lipophilic 3-hydroxy-2-pyridine aldoximes, which were recently shown to be potent AChE reactivators with a potential to be centrally active. The oxime JR595 was singled out as highly metabolically stable in human liver microsomes, noncytotoxic oxime for SH-SY5Y neuroblastoma and 1321N1 astrocytoma cell lines, and its pharmacokinetic profile was determined after intramuscular administration in mice. JR595 was rapidly absorbed into blood after 15 min with simultaneous distribution to the brain at up to about 40% of its blood concentration; however, it was eliminated from both the brain and blood within an hour. In addition, the MDCKII-MDR1 cell line assay showed that oxime JR595 was not a P-glycoprotein efflux pump substrate. Finally, the preliminary antidotal study against multiple LD50 doses of VX and sarin in mice showed the potential of JR595 to provide desirable therapeutic outcomes with future improvements in its circulation time.


Assuntos
Antídotos/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Agentes Neurotóxicos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antídotos/química , Encéfalo/metabolismo , Substâncias para a Guerra Química/farmacologia , Humanos , Masculino , Camundongos , Oximas/química , Oximas/farmacologia , Relação Estrutura-Atividade
11.
Mil Med ; 185(Suppl 1): 435-442, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074356

RESUMO

INTRODUCTION: First responders and those who work with organophosphate (OP) compounds can experience ocular symptoms similar to those caused by exposure to low levels of nerve agents. This study was designed to examine the efficacy of a safe, clinically available, simulant that reproduces ocular symptoms associated with low-level OP exposure. Among these ocular symptoms are a constriction of the pupils (miosis), decreased visual acuity, and changes in accommodation. MATERIALS AND METHODS: Volunteers aged 18-40 were assigned to groups receiving either a two-drop or three-drop dose of FDA approved 2% pilocarpine ophthalmic solution. Baseline visual performance measurements were taken before eye drop instillation and a timer was started following the first drop of pilocarpine. Once eye drops were administered, visual performance including distant and near vision, pupil size, and accommodation were measured every 5 minutes for 2 hours. RESULTS: Both groups experienced significant miosis in excess of 90 minutes. Visual acuity was significantly reduced because of accommodative changes. The three-drop group experienced longer lasting combined effects when compared to the two-drop group. CONCLUSIONS: 2% pilocarpine ophthalmic solution can safely simulate major ocular symptoms of OP exposure for behavioral research studies for at least 60 minutes.


Assuntos
Miose/fisiopatologia , Intoxicação por Organofosfatos/complicações , Pilocarpina/administração & dosagem , Fatores de Tempo , Acomodação Ocular/efeitos dos fármacos , Adolescente , Adulto , Feminino , Humanos , Masculino , Agentes Neurotóxicos/efeitos adversos , Agentes Neurotóxicos/farmacologia , Agentes Neurotóxicos/intoxicação , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/farmacologia , Intoxicação por Organofosfatos/diagnóstico , Intoxicação por Organofosfatos/fisiopatologia , Pilocarpina/farmacologia , Pupila , Acuidade Visual/efeitos dos fármacos , Pesos e Medidas/instrumentação
12.
J Pharmacol Exp Ther ; 373(1): 10-23, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907304

RESUMO

Although there has been an increasing appreciation for functional differences between the dorsal (dH) and ventral (vH) hippocampal sectors, there is a lack of information characterizing the cholinergic and noncholinergic mechanisms of acetylcholinesterase inhibitors on synaptic transmission along the hippocampal dorsoventral axis. Diisopropylfluorophosphate (DFP) is an organophosphate (OP) that is commonly employed as a nerve agent surrogate in vitro as well as in rodent models of disease states, such as Gulf War Illness. The present study investigated the cholinergic and noncholinergic mechanisms responsible for the effects of acute DFP exposure on dH and vH synaptic transmission in a hippocampal slice preparation. A paired-pulse extracellular recording protocol was used to monitor the population spike (PS) amplitude as well as the PS paired-pulse ratio (PS-PPR) in the CA1 subfield of the dH and the vH. We observed that DFP-induced PS1 inhibition was produced by a cholinergic mechanism in the dH, whereas a noncholinergic mechanism was indispensable in mediating the inhibitory effect of DFP on the PS1 in the vH. PS-PPR in both dH and vH sectors was increased by acute DFP exposure, an effect that was blocked by an N-methyl-D-aspartate receptor antagonist but not by cholinergic antagonists. Clinical reports have indicated dorsoventral-specific hippocampal abnormalities in cases of OP intoxications. Therefore, the observed dorsoventral-specific noncholinergic mechanisms underlying the effects of DFP on hippocampal synaptic transmission may have important implications for the treatment of OP overexposures. SIGNIFICANCE STATEMENT: It is unknown if acetylcholinesterase inhibitors differentially impact dorsal and ventral hippocampal synaptic transmission. The data in the present study show that an organophosphate, diisopropylfluorophosphate, impacts glutamatergic transmission along the dorsoventral axis in a hippocampal slice preparation via distinct cholinergic and noncholinergic mechanisms. These findings may provide insight into investigations of therapeutic agents that target noncholinergic mechanisms in cases of organophosphate overexposures.


Assuntos
Inibidores da Colinesterase/farmacologia , Hipocampo/efeitos dos fármacos , Isoflurofato/farmacologia , Agentes Neurotóxicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia
13.
Mini Rev Med Chem ; 19(12): 970-979, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827238

RESUMO

Nerve agents belong to the most dangerous chemical warfare agents and can be/were misused by terrorists. Effective prophylaxis and treatment is necessary to diminish their effect. General principles of prophylaxis are summarized (protection against acetylcholinesterase inhibition, detoxification, treatment "in advance" and use of different drugs). They are based on the knowledge of mechanism of action of nerve agents. Among different examinations, it is necessary to test prophylactic effectivity in vivo and compare the results with protection in vitro. Chemical and biological approaches to the development of new prophylactics would be applied simultaneously during this research. Though the number of possible prophylactics is relatively high, the only four drugs were introduced into military medical practice. At present, pyridostigmine seems to be common prophylactic antidote; prophylactics panpal (tablets with pyridostigmine, trihexyphenidyl and benactyzine), transant (transdermal patch containing HI-6) are other means introduced into different armies as prophylactics. Scavenger commercionally available is Protexia®. Future development will be focused on scavengers, and on other drugs either reversible cholinesterase inhibitors (e.g., huperzine A, gallantamine, physostigmine, acridine derivatives) or other compounds.


Assuntos
Reativadores da Colinesterase/farmacologia , Colinesterases/metabolismo , Agentes Neurotóxicos/farmacologia , Animais , Reativadores da Colinesterase/química , Humanos , Modelos Moleculares , Agentes Neurotóxicos/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-30790623

RESUMO

INTRODUCTION: Organophosphorus nerve agents (OPNAs) irreversibly block acetylcholinesterase activity, resulting in accumulation of excess acetylcholine at neural synapses, which can lead to a state of prolonged seizures known as status epilepticus (SE). Benzodiazepines, the current standard of care for SE, become less effective as latency to treatment increases. In a mass civilian OPNA exposure, concurrent trauma and limited resources would likely cause a delay in first response time. To address this issue, we have developed a rat model to test novel anticonvulsant/ neuroprotectant adjuncts at delayed time points. METHODS: For model development, adult male rats with cortical electroencephalographic (EEG) electrodes were exposed to soman and administered saline along with atropine, 2-PAM, and midazolam 5, 20, or 40 min after SE onset. We validated our model using three drugs: scopolamine, memantine, and phenobarbital. Using the same procedure outlined above, rats were given atropine, 2-PAM, midazolam and test treatment 20 min after SE onset. RESULTS: Using gamma power, delta power, and spike rate to quantify EEG activity, we found that scopolamine was effective, memantine was minimally effective, and phenobarbital had a delayed effect on terminating SE. Fluoro-Jade B staining was used to assess neuroprotection in five brain regions. Each treatment provided significant protection compared to saline + midazolam in at least two brain regions. DISCUSSION: Because our data agree with previously published studies on the efficacy of these compounds, we conclude that this model is a valid way to test novel anticonvulsants/ neuroprotectants for controlling benzodiazepine-resistant OPNA-induced SE and subsequent neuropathology.


Assuntos
Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Memantina/farmacologia , Agentes Neurotóxicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenobarbital/farmacologia , Escopolamina/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Atropina/farmacologia , Encéfalo/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Midazolam/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Soman/farmacologia , Estado Epiléptico/induzido quimicamente
15.
Epilepsia ; 60(2): 315-321, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30615805

RESUMO

OBJECTIVES: Children and adults are likely to be among the casualties in a civilian nerve agent exposure. This study evaluated the efficacy of valnoctamide (racemic-VCD), sec-butylpropylacetamide (racemic-SPD), and phenobarbital for stopping nerve agent seizures in both immature and adult rats. METHODS: Female and male postnatal day (PND) 21, 28, and 70 (adult) rats, previously implanted with electroencephalography (EEG) electrodes were exposed to seizure-inducing doses of the nerve agents sarin or VX and EEG was recorded continuously. Five minutes after seizure onset, animals were treated with SPD, VCD, or phenobarbital. The up-down method was used over successive animals to determine the anticonvulsant median effective dose (ED50 ) of the drugs. RESULTS: SPD-ED50 values in the VX model were the following: PND21, 53 mg/kg (male) and 48 mg/kg (female); PND28, 108 mg/kg (male) and 43 mg/kg (female); and PND70, 101 mg/kg (male) and 40 mg/kg (female). SPD-ED50 values in the sarin model were the following: PND21, 44 mg/kg (male) and 28 mg/kg (female); PND28, 79 mg/kg (male) and 34 mg/kg (female); and PND70, 53 mg/kg (male) and 53 mg/kg (female). VCD-ED50 values in the VX model were the following: PND21, 34 mg/kg (male) and 43 mg/kg (female); PND28, 165 mg/kg (male) and 59 mg/kg (female); and PND70, 87 mg/kg (male) and 91 mg/kg (female). VCD-ED50 values in the sarin model were the following: PND21, 45 mg/kg (male), 48 mg/kg (female); PND28, 152 mg/kg (male) 79 mg/kg (female); and PND70, 97 mg/kg (male) 79 mg/kg (female). Phenobarbital-ED50 values in the VX model were the following: PND21, 43 mg/kg (male) and 18 mg/kg (female); PND28, 48 mg/kg (male) and 97 mg/kg (female). Phenobarbital-ED50 values in the sarin model were the following: PND21, 32 mg/kg (male) and 32 mg/kg (female); PND28, 58 mg/kg (male) and 97 mg/kg (female); and PND70, 65 mg/kg (female). SIGNIFICANCE: SPD and VCD demonstrated anticonvulsant activity in both immature and adult rats in the sarin- and VX-induced status epilepticus models. Phenobarbital was effective in immature rats, whereas in adult rats, higher doses were required that were accompanied by toxicity. Overall, significantly less drug was required to stop seizures in PND21 animals than in the older animals, and overall, males required higher amounts of drug than females.


Assuntos
Amidas/farmacologia , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/análogos & derivados , Animais , Anticonvulsivantes/uso terapêutico , Criança , Modelos Animais de Doenças , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Agentes Neurotóxicos/farmacologia , Fenobarbital/uso terapêutico , Ratos , Ácido Valproico/farmacologia
16.
Mol Inform ; 38(8-9): e1800106, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30474294

RESUMO

In March 2018 the term Novichok (Hoвичoκ) became publically known following an attempted murder of a former Russian spy in Salisbury, UK. Novichok is the name of a group of nerve agents secretly produced by Russia in the later stages of the Cold War. These compounds were never declared under the Chemical Weapons Convention and very little is known about the actual identity and characteristics of these compounds. Structures of some of the Novichoks have been reported by a former Russian chemist, Vil Mirzayanov, previously working at the Russian State Scientific Research Institute of Organic Chemistry and Technology (GOSNIIOKhT). It was in this context claimed that at least two compounds of the Novichok family, known as Novichok-5 and Novichok-7 were 5-8 times more potent than the hitherto most toxic nerve agent, VX. The present study elucidates, applying a series of QSAR models toxicity, skin permeation, pharmacokinetic aspects as well as the environmental fate of a series of Novichoks. Virtually the results from the different studies related to human health point in the same direction, i. e., the Novichoks are significantly less toxic than VX and the skin permeation much lower and less efficient than observed for VX. Hence, the claim by Mirzayanov could not be substantiated.


Assuntos
Agentes Neurotóxicos/farmacologia , Organofosfatos/farmacologia , Pele/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Agentes Neurotóxicos/química , Agentes Neurotóxicos/metabolismo , Organofosfatos/química , Organofosfatos/metabolismo , Relação Quantitativa Estrutura-Atividade , Solubilidade
17.
J Med Chem ; 61(23): 10753-10766, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30383374

RESUMO

Six chlorinated bispyridinium mono-oximes, analogous to potent charged reactivators K027, K048, and K203, were synthesized with the aim of improving lipophilicity and reducing the p Ka value of the oxime group, thus resulting in a higher oximate concentration at pH 7.4 compared to nonchlorinated analogues. The nucleophilicity was examined and the p Ka was found to be lower than that of analogous nonchlorinated oximes. All the new compounds efficiently reactivated human AChE inhibited by nerve agents cyclosarin, sarin, and VX. The most potent was the dichlorinated analogue of oxime K027 with significantly improved ability to reactivate the conjugated enzyme due to improved binding affinity and molecular recognition. Its overall reactivation of sarin-, VX-, and cyclosarin-inhibited AChE was, respectively, 3-, 7-, and 8-fold higher than by K027. Its universality, PAMPA permeability, favorable acid dissociation constant coupled with its negligible cytotoxic effect, and successful ex vivo scavenging of nerve agents in whole human blood warrant further analysis of this compound as an antidote for organophosphorus poisoning.


Assuntos
Acetilcolinesterase/metabolismo , Cloro/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Agentes Neurotóxicos/farmacologia , Oximas/química , Oximas/farmacologia , Acetilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Fenômenos Químicos , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/metabolismo , Humanos , Isomerismo , Simulação de Acoplamento Molecular , Oximas/síntese química , Oximas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
19.
J Pharmacol Exp Ther ; 367(2): 302-321, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115757

RESUMO

Organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and the nerve agent sarin are lethal chemicals that induce seizures, status epilepticus (SE), and brain damage. Midazolam, a benzodiazepine modulator of synaptic GABA-A receptors, is currently considered as a new anticonvulsant for nerve agents. Here, we characterized the time course of protective efficacy of midazolam (0.2-5 mg/kg, i.m.) in rats exposed to DFP, a chemical threat agent and surrogate for nerve agents. Behavioral and electroencephalogram (EEG) seizures were monitored for 24 hours after DFP exposure. The extent of brain injury was determined 3 days after DFP exposure by unbiased stereologic analyses of valid markers of neurodegeneration and neuroinflammation. Seizures were elicited within ∼8 minutes after DFP exposure that progressively developed into persistent SE lasting for hours. DFP exposure resulted in massive neuronal injury or necrosis, neurodegeneration of principal cells and interneurons, and neuroinflammation as evident by extensive activation of microglia and astrocytes in the hippocampus, amygdala, and other brain regions. Midazolam controlled seizures, neurodegeneration, and neuroinflammation when given early (10 minutes) after DFP exposure, but it was less effective when given at 40 minutes or later. Delayed therapy (≥40 minutes), a simulation of the practical therapeutic window for first responders or hospital admission, was associated with reduced seizure protection and neuroprotection. These results strongly reaffirm that the DFP-induced seizures and brain damage are progressively resistant to delayed treatment with midazolam, confirming the benzodiazepine refractory SE after OP intoxication. Thus, novel anticonvulsants superior to midazolam or adjunct therapies that enhance its efficacy are needed for effective treatment of refractory SE.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Isoflurofato/farmacologia , Midazolam/farmacologia , Praguicidas/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Inibidores da Colinesterase/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Agentes Neurotóxicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Intoxicação por Organofosfatos/prevenção & controle , Organofosfatos/farmacologia , Compostos Organofosforados/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Convulsões/metabolismo , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo
20.
J Med Chem ; 61(16): 7032-7033, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30110162

RESUMO

Organophosphorus agents such as sarin and soman that phosphylate the active site serine of the enzyme acetylcholinesterase are notorious and pernicious, not only because they have been used by tyrants to effect mass murder of their own populations but also because they are sought by terrorists to inflict mass casualties on civilian populations. These threats underscore the need to develop effective antidotes against such agents. Phosphylation of acetylcholinesterase produces two adducts, an initial neutral adduct that can be reactivated with oxime nucleophiles, and a subsequent monoanionic adduct (called aged acetylcholinesterase) which has proven over two generations to be impervious to reactivation. This Viewpoint discusses a recent article in the journal that describes the first successful efforts to resurrect the activity of aged acetylcholinesterase.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Agentes Neurotóxicos/farmacologia , Organofosfatos/farmacologia , Animais , Inibidores da Colinesterase/química , Humanos , Estrutura Molecular , Agentes Neurotóxicos/química , Organofosfatos/química , Torpedo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA